首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2514篇
  免费   210篇
  国内免费   188篇
  2023年   20篇
  2022年   22篇
  2021年   24篇
  2020年   64篇
  2019年   50篇
  2018年   68篇
  2017年   45篇
  2016年   59篇
  2015年   66篇
  2014年   82篇
  2013年   95篇
  2012年   50篇
  2011年   89篇
  2010年   85篇
  2009年   93篇
  2008年   145篇
  2007年   145篇
  2006年   144篇
  2005年   130篇
  2004年   118篇
  2003年   113篇
  2002年   105篇
  2001年   95篇
  2000年   93篇
  1999年   86篇
  1998年   75篇
  1997年   100篇
  1996年   65篇
  1995年   58篇
  1994年   42篇
  1993年   62篇
  1992年   49篇
  1991年   42篇
  1990年   42篇
  1989年   39篇
  1988年   46篇
  1987年   37篇
  1986年   38篇
  1985年   29篇
  1984年   31篇
  1983年   24篇
  1982年   15篇
  1981年   12篇
  1980年   10篇
  1979年   4篇
  1978年   5篇
  1976年   1篇
排序方式: 共有2912条查询结果,搜索用时 93 毫秒
1.
Arundo donax L., commonly known as giant reed, is promising biomass feedstock that is also a notorious invasive plant in freshwater ecosystems around the world. Heretofore, the salt tolerance of A. donax had not been quantified even though anecdotal evidence suggests halophytic qualities. To test whole-plant and leaf level responses, we established a pot experiment on 80 scions propagated from an A. donax population that has naturalized on the shore of the San Francisco Bay Estuary. To quantify growth and physiological responses to salinity (NaCl), A. donax scions were divided into eight treatments and grown for 60 days across a range of salinities (0–42 dS m−1). Classic growth analysis showed >80% reduction in overall growth at the highest salinities. Yet, there was zero mortality indicating that A. donax is able to tolerate high levels of salt. Declining photosynthesis rates were strongly correlated (R2 > 0.97) with decreasing stomatal conductance, which was in turn closely related to increasing salinity. Leaf gas exchange revealed that stomata and leaf limitations of carbon dioxide were three times greater at high salinities. Nonetheless, even when salinities were 38–42 dS m−1 A. donax was able to maintain assimilation rates 7–12 μmol m−2 s−1. Further, by maintaining 50% relative growth at salinities ~12 dS m−1 A. donax can now be classified as ‘moderately salt tolerant’. A. donax leaf gas exchange and whole-plant salt tolerance are greater than many important food crops (i.e. maize, rice), the bioenergy feedstock Miscanthus × giganteus, as well as some uncultivated plant species (i.e. Populus and Salix) that are indigenous in regions A. donax currently invades. The results of this study have implications for both agronomists wishing to expand A. donax to fields dominated by saline soils, and for others who are concerned about the spread of A. donax with altered stream hydrology or sea-level rise.  相似文献   
2.
3.
4.
Decreased hydraulic conductance in plants at elevated carbon dioxide   总被引:3,自引:2,他引:1  
Previous work indicated that long-term exposure to elevated carbon dioxide levels can reduce hydraulic conductance in some species, but the basis of the response was not determined. In this study, hydraulic conductance was measured at concentrations of both 350 and 700 cm3 m–3 carbon dioxide for plants grown at both concentrations, to determine the reversibility of the response. In Zea mays and Amaranthus hypochondriacus , exposure to the higher carbon dioxide concentration for several hours reduced whole-plant transpiration rate by 22–40%, without any consistent change in leaf water potential, indicating reversible reductions in hydraulic conductance at elevated carbon dioxide levels. Hydraulic conductance in these species grown at both carbon dioxide concentrations responded similarly to measurement concentration of carbon dioxide, indicating that the response was reversible. In Glycine max , which in earlier work had shown a long-term decrease in hydraulic conductance at elevated carbon dioxide levels, and in Abutilon theophrasti , no short-term changes in hydraulic conductance with measurement concentration of carbon dioxide were found, despite lower transpiration rates at elevated carbon dioxide. In G. max and Medicago sativa , growth at high dew-point temperature reduced transpiration rate and decreased hydraulic conductance. The results indicate that both reversible and irreversible decreases in hydraulic conductance can occur at elevated carbon dioxide concentrations, and that both could be responses to reduced transpiration rate, rather than to carbon dioxide concentration itself.  相似文献   
5.
6.
Summary The daily course of stomatal conductance and transpiration was monitored on each separate face of vertical phyllodes of various acacias. The selected phyllodes had a north-south orientation so that one side faced eastwards and the other westwards. The principal measurements were made on Acacia longifolia and A. melanoxylon in Portugal in late summer and autumn, and additional measurements were made on A. ligulata and A. melanoxylon in Australia. In Portugal, irrespective of soil moisture status, conductance showed on early morning maximum with a subsequent gradual decline and sometimes a subsidiary peak in the late afternoon. Maximum conductances appeared to be a function of soil moisture status, whereas the decline in conductance in the late morning and afternoon was correlated with changes in phyllode-to-air vapour pressure deficits rather than changes in phyllode water status. The relationship of transpiration to phyllode water potential did not appear to be influenced by soil moisture status, although transpiration was less in drier soils and in the afternoons, this latter factor contributing to a marked hysteresis in the relationship. The opposing faces of the phyllodes exhibited a high degree of synchrony, showing parallel stomatal opening and closing, despite their large differences in irradiance. Stomatal conductance tended to be higher on the eastern faces in the morning and lower in the afternoon. In A. longifolia the daily average of relative conductance was much the same for both faces, but in A. melanoxylon that of the eastern face was higher and was retained even when the normal orientation of the phyllodes was reversed by turning them through 180°. Synchrony must be achieved by the stomata of both sides responding to common environmental or endogenous signals which are perceived by both surfaces with equal sensitivity.  相似文献   
7.
8.
The foliage leaf epidermis of 35 species representing 12 key genera of woody bamboos of the Asian tropics was investigated using light and scanning electron microscopy. The results indicated that papillae forms and distributional patterns around the stomatal apparatus of the abaxial foliage leaf epidermis were usually constant and were of great taxonomic significance at the specific and generic levels. However, papillae characters were not suitable for dividing subtribes within woody bamboos of the Asian tropics. On the basis of papillae characters, Schizostachyum s.s. and Cephalostachyum were confirmed, but their delimitations should be modified. The transfer of Leptocanna chinensis and Schizostachyum sanguineum into Cephalostachyum was supported, and Cephalostachyum virgatum and C .  pergracile were confirmed to be members of Schizostachyum s.s. The subtribe Racemobambosinae did not obtain support and Racemobambos appeared to be better placed in subtribe Bambusinae. Neomicrocalamus was supported as a close relative and better treated as a synonym of Racemobambos . Gigantochloa was closely related to Dendrocalamus .  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 411–423.  相似文献   
9.
The dielectrophoretic (DEP) crossover method has been applied to the detection of cell responses to toxicants. Time and dose responses of the human cultured leukemia (HL-60) line were measured for paraquat, styrene oxide (SO), N-nitroso-N-methylurea (NMU) and puromycin. These toxicants were chosen because of their different predominant mechanisms of action, namely membrane free radical attack, simultaneous membrane and nucleic acid attack, nucleic acid alkylation, and protein synthesis inhibition, respectively. For all treatments, the specific membrane capacitance (Cmem) of the cells decreased while the specific membrane conductance (Gmem) increased in dose- and time-dependent manners. The DEP responses correlated sensitively with alterations in cell surface morphology, especially folds, microvilli, and blebs, observed by scanning electron microscopy. The DEP method was more sensitive to agents that had a direct action on the membrane than to agents for which membrane alterations were secondary. The responses to paraquat and SO, which directly damaged the cell membrane, could be detected 15 min after exposure, while those for puromycin and NMU, which acted on intracellular targets, could be detected after 30 min. The detection times and dose sensitivity results showed that the DEP method is much faster and more sensitive than conventional cell and higher organism viability testing techniques. The feasibility of producing small instruments for toxicity detection and screening based on cellular dielectric responses is discussed.  相似文献   
10.
Spartina alterniflora Lois. is a dominant species growing in intermediate and saline marshes of the US Gulf coast and Atlantic coastal marshes. S. alterniflora plants were subjected to a range of soil redox potential (Eh) conditions representing a well aerated to reduced conditions in a rhizotron system under controlled environmental conditions. The low soil Eh resulted in inhibition of root elongation shortly after treatment initiation. Root elongation was reduced as soil Eh approached values below ca. +350 mV. Substantial decrease in root elongation was noted when soil Eh fell below +200 mV. Generally, net photosynthetic rate (PN) decreased as soil Eh was reduced, with substantial reductions in PN found when Eh approached negative values. Average PN was reduced to 87, 64, and 44% of control under +340, +245, and -180 mV treatments, respectively. The reductions in root elongation and PN in response to low soil Eh indicated the adverse effects of low soil Eh on plant functioning and the need for periods of soil aeration that allow plants to resume normal functioning. Thus periods of drainage allowing soil aeration during the growing season appear to be critical to S. alterniflora by providing favorable conditions for root growth and gas exchange with important implications for plant carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号